Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers

نویسندگان

  • Wan Y. Shih
  • Xiaoping Li
  • Huiming Gu
  • Wei-Heng Shih
  • Ilhan A. Aksay
چکیده

We have examined both experimentally and theoretically a piezoelectric unimorph cantilever as a liquid viscosity-and-density sensor. The fabricated piezoelectric unimorph consisted of a PbO•ZrO2•TiO2 ~PZT! layer on a thin stainless-steel plate. In addition to a driving electrode, a sensing electrode was placed on top of the PZT layer, permitting the direct measurement of the resonance frequency. The cantilever was tested using water–glycerol solutions of different compositions. In all three of the tested modes, the resonance frequency decreased while the width of the resonance peak increased with increasing glycerol content. To account for the liquid effect, we consider the cantilever as a sphere of radius R oscillating in a liquid. By including the high and low frequency terms in the induced mass and the damping coefficient of the liquid, we show that for a given liquid density and viscosity the oscillating-sphere model predicts a resonance frequency and peak width that closely agree with experiment. Furthermore, the viscosity and the density of a liquid have been determined simultaneously using the experimentally measured resonance frequency and peak width as inputs to the oscillating-sphere model. The calculated liquid viscosity and density closely agreed with the known values, indicating that our cantilever-based sensor is effective in determining viscosity and density, simultaneously. We also show that scaling analysis predicts an increase in the width of the resonance peak with decreasing cantilever size, an observation in agreement with the large peak widths observed for microcantilevers. © 2001 American Institute of Physics. @DOI: 10.1063/1.1287606#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester

The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...

متن کامل

Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths.

We have examined a piezoelectric unimorph cantilever (PUC) with unequal piezoelectric and nonpiezoelectric lengths for vibration energy harvesting theoretically by extending the analysis of a PUC with equal piezoelectric and nonpiezoelectric lengths. The theoretical approach was validated by experiments. A case study showed that for a fixed vibration frequency, the maximum open-circuit induced ...

متن کامل

Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever†

Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders ...

متن کامل

Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6an02674e Click here for additional data file.

Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders ...

متن کامل

Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-Cantilever

The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000